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Abstract 

Pristipomoides filamentosus is an economically and culturally important species of deepwater 

snapper found throughout the tropical Indo-Pacific. From 1989 to 1993, the State of Hawaii 

initiated a tagging program with fish opportunistically recaptured by scientists and fishers to 

quantify growth and other life history parameters for the species. Over approximately 10 years, 

10.5% of the 4,179 tagged fish were recaptured. We used these data to compare von Bertalanffy 

growth parameters estimated using Bayesian and likelihood approaches. Next, we defined an 

objective cost function to estimate growth parameters that integrated the tagging data with direct 

aging and length frequency data used in previous regional growth studies. Our results reconcile 

30+ years of effort from various methods to estimate growth parameters for P. filametosus in 

Hawaii (��=68.14 cm FL [95% Confidence Interval (CI): 65.42–69.54] and K=0.22yr-1 [CI: 

0.20–0.25]), demonstrate the importance of individual variability in the species due primarily to 

the asymptotic length parameter ��, and suggest the effects of sexual dimorphism on growth as a 

focus of future inquiry. These results have direct management implications as growth is a critical 

input for age-based stock assessment models and often used as a proxy for other life history 

traits. 
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1. Introduction 

Pristipomoides filamentosus (Valenciennes, 1830) is a species of long-lived deepwater snapper 

distributed throughout the tropical Indo-Pacific (Allen, 1985; Gaither et al., 2011). The species 

constitutes a significant fraction of Hawaii’s commercial bottomfish fishery where it is 

colloquially known as opakapaka (Ralston and Polovina, 1982; Langseth et al., 2018). P. 

filamentosus is one of seven management unit species pooled for the assessment of Hawaii’s 

bottomfish stock. However, there is interest in the potential use of species-specific, age-

structured assessments for this stock, which require accurate estimates of growth and other life 

history parameters (Langseth et al., 2018; Maunder et al., 2015, Oyafuso et al. 2017). 

Several studies have used different approaches to estimate growth parameters for P. 

filamentosus in Hawaii and elsewhere in the Indo-Pacific (Table 1). Early estimates were 

obtained using direct aging approaches with length-at-age data from otolith reads interpreted as a 

proxy for age (Ralston and Miyamoto, 1983; Uchiyama and Tagami, 1984; Radtke, 1987; 

DeMartini, et al., 1994, Ralston and Williams, 1988). These methods relied on the integration of 

daily otolith bands which can bias age estimates due to episodic growth and poor increment 

resolution in early (< 5 years) life stages (Wakefield et al., 2017). Revised parameter estimates 

using the direct aging approach were obtained by supplementing datasets from those earlier 

studies with additional length-at-age data where ages were estimated using bomb radiocarbon 

and lead-radium ratios (Andrews et al., 2012). In addition, a length frequency approach was used 

to estimate growth parameters by tracking the modal length progression of juvenile cohorts 

caught in nursery habitat in Kaneohe Bay, Hawaii. However, this study used a previous estimate 

of �� where individual variability was not considered; this omission can result in biased 

parameter estimates (Sainsbury, 1980, Moffitt and Parrish, 1996). Estimation of growth 

parameters from an ongoing mark-recapture study (separate from the results reported here) has 

attempted using growth increment approaches, but preliminary results have been limited by the 

size distribution of recaptured individuals and the use of a parameterization of von Bertalanffy’s 

growth function (VBGF) that is not compatible with direct aging and length frequency 

approaches (Francis, 1988a; O’Malley, 2015). While the methods of each of the aforementioned 

studies produced individual estimates of growth parameters, none of the studies attempted to 

integrate all three classes of data (i.e., direct aging, modal progression, growth increment from 

tagging) to explicitly evaluate the parameter values and sources of uncertainty. 
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Analytical and statistical advances for estimating growth have developed to account for 

sources of variability and permit parameter comparisons across length-at-age, length frequency, 

and tagging based approaches (Eveson et al., 2004; Francis, 1988b; Wang et al., 1995). 

Structural modifications to Fabens (1965) parameterization of the VBGF address issues of 

compatibility between growth parameters from direct aging and length frequency approaches 

with those derived from tagging studies (Maller and Deboer, 1988; James, 1991; Palmer et al., 

1991, Laslett et al., 2002; Eveson et al., 2004, 2007; Zhang et al., 2009). These methods use 

maximum likelihood and Bayesian frameworks to accommodate individual variability by 

describing population parameters using probability distributions (Francis, 1988b; Kimura et al., 

1993; Wang et al., 1995; Zhang et al., 2009). Bayesian approaches allow � and �� to be 

sampled in this manner and can account for prior information when estimating parameters 

(Zhang et al., 2009). Maximum likelihood approaches typically estimate � once for the entire 

population (henceforth referred to as “fixed”) but flexibility in their implementation has allowed 

for the development of model structures that can estimate a single set of growth parameters from 

direct aging, length frequency, and growth increment data simultaneously (Wang et al. 1995, 

Laslett et al. 2002, Eveson et al. 2004). 

We derive growth parameters using Bayesian and maximum likelihood methods applied to a 

previously unreported dataset from a cooperative tagging program for P. filamentosus in the 

Main Hawaiian Islands (MHI), with fishers opportunistically recapturing fish and reporting to 

the State of Hawaii’s Division of Aquatic Resources. Parameters estimated from these data using 

a Bayesian framework are compared to a maximum likelihood approach integrating tagging data 

with length-at-age and length frequency data previously used to describe growth in P. 

filamentosus in the MHI and Northwestern Hawaiian Islands (NWHI). These new growth 

estimates are compared to those previously reported for P. filamentosus in the Hawaiian 

Archipelago. 

2. Materials and methods 

2.1 Opakapaka tagging program 

Tagging data used for this analysis were obtained by biologists from Hawaii’s Division of 

Aquatic Resources (DAR) within the state’s Department of Land and Natural Resources 

(DLNR). Between 1989 and 1993 the Opakapaka Tagging Program (OTP), led by staff biologist 

Henry Okamoto operated from fishing vessels contracted out of Honolulu Harbor, tagging and 
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releasing 4,179 P. filamentosus in total. All tagging occurred in the MHI, with coarse location 

data for the site of tagging and recapture recorded using the commercial statistical reporting grid 

(Table 2; Figure 1). Tagging effort concentrated primarily around the island of Oahu and the 

Maui Nui complex which includes the islands of Maui, Molokai, Lanai and Kahoolawe. Since 

1990, these areas have accounted for approximately 67.7% of Hawaii’s commercial bottomfish 

harvest. Fewer than 1% of fish in this study were tagged offshore of the islands of Niihau and 

Hawaii (Big Island). 

Fish were caught with hook-and-line gear and brought to the surface at a rate of 2-5 feet per 

second. Prior to tagging, each fish was placed in a holding container with aerated seawater to 

assess their likelihood of surviving. Fish appearing lively and upright were deemed suitable 

candidates for tagging. If the stomach was inverted and full of gas, it was punctured using a 

small sharp instrument (e.g., scalpel, hypodermic needle, fishhook). A few scales were removed 

and a small surgical incision (~1 cm) was made near the fish’s anal opening to assist in expelling 

gas from the body cavity. A uniquely identifiable monofilament streamer tag was anchored 

within and protruded from this incision. The fork length of each fish was recorded to the nearest 

¼ inch in addition to the location and time of capture before returning the fish to the to sea 

headfirst with downward momentum attempting to counteract buoyancy due to any residual gas 

(Okamoto, 1993). 

Local commercial and recreational fishers were made aware of the program through fliers 

distributed at the local fish markets, to fish dealers, at fishing supply outlets, and posted at small 

boat harbors and recaptured fish were reported up to a decade after they were tagged (Kobayashi, 

2008; Okamoto 1993). Fishers were incentivized with a $10 reward to report the date, location, 

and depth that each fish was landed and the fish’s fork length. When recaptured by OTP 

personnel, tagged fish were fitted with an additional tag and released again. 

2.2 Tagging data management 

The data collected by the OTP were entered into a spreadsheet and subsequent analysis was 

performed using R (R Core Team, 2014), the Bayesian statistical software JAGS (Plummer, 

2003), and the R package R2Jags (Su and Yajima, 2012). The dataset was filtered to remove 

records of individuals that were never recaptured, individuals for which the tagging date, 

recapture date, or tag ID was not recorded, and individuals that were not the species of interest. 

Fork lengths for the remaining fish recorded at tagging and recapture were linearly transformed 
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from inches to centimeters prior to model fitting for consistency with growth parameters 

estimated elsewhere. Incremental growth (Δ�) and time at liberty (Δ�) were calculated for each 

fish. When individuals were recaptured on more than one occasion, Δ� and Δ� were only 

calculated between the first marking event and the final recapture so as to not violate model 

assumptions of independence. Fish with Δ� less than 60 days were excluded from the dataset. 

2.3 Parameter estimation from tagging data: Bayesian approach 

Growth parameters were estimated for the P. filamentosus tagging data following the Bayesian 

methodology of Zhang et al. (2009). This approach uses a Fabens version of the VBGF but 

allows the parameters to vary among individuals. Hence the predicted length of a captured 

individual is expressed as: 

�� = ��,�(1 − ����(���∆���� (1) 

This equation is parameterized such that ��,� is the length of individual i when the individual is 

captured (that is, when an individual is initially captured and marked and again during the final 

recapture event), ∆�� is the time-at-liberty (time between initial capture and the last recapture) for 

the ith individual when it was recaptured. This term is zero when the equation is used to calculate 

the individual’s length at capture. �� is the relative age of ith individual at tagging (age minus 

∆��). Parameters � and �� are the VBGF parameters for the ith individual drawn from Gaussian 

distributions defining the population means. Moderately informative normally distributed priors 

for � and �� were constructed from the mean and variance of each parameter previously 

estimated by other regional studies [� ~ �(0.242� �!, 0.114� and �� ~ �(71.4#$, 24.7�] 
(Table 1). Uninformative priors were used for all other parameters, following the approach of 

Zhang et al. (2009). 

The hierarchical Bayesian model allowed both the � and �� parameters to vary among 

individuals by sampling these parameters from the distribution of hyperparameters, as described 

above is henceforth referred to as Model 1. This model was compared to three additional models 

fit with various constraints to � and ��. Model 2 estimated the � parameter once for the entire 

population (henceforth referred to as “fixed”) while accounting for variation among individuals 

by sampling �� from hyperparameter distributions. Model 3 treated �� as a fixed parameter 

while sampling � parameter from hyperparameter distributions, and both parameters were fixed 

under Model 4. 
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Evaluating the restrictive assumptions of models 2-4 was accomplished by comparing growth 

parameters to those estimated using Model 1. Model 1 is the presumptive best estimate for P. 

filamentosus VBGF parameters, since it allows the most flexible incorporation of individual 

variability by sampling both �� and � from hyperparameters. If a given parameter is relatively 

stable when the parameter varies across individuals and when it was treated as fixed for the 

population, then it might be inferred that treating this parameter on an individual basis is not 

warranted. However, if parameter estimates differed when the parameter was fixed, then it might 

be inferred that treating this parameter on an individual basis is necessary. Model 4 would a 

priori be most similar to the Fabens approach, with both fixed � and ��, but with the added 

feature of estimating ages at initial tagging, ��. It is the inclusion of this term that models growth 

as a function of age, rather than length, allowing for direct comparison between parameters 

estimated using tagging data and those obtained from direct-age and length frequency 

approaches (Wang et al., 1995). 

For each Bayesian model, the first 150,000 samples from the posterior distribution were 

treated as burn-in and discarded from the Monte Carlo simulation. Additional samples were 

thinned at an interval of 1/50 (number kept = 30,000) to reduce potential autocorrelation between 

sequential values or strings of values in the posterior distributions. Initial starting estimates of � 
and �� were obtained from Andrews et al. (2012) with two additional chains run simultaneously 

with initial starting values 50% lower and 100% higher. This resulted in nearly identical 

solutions as shown in Table 3. The mean � and �� values from the posterior distribution were 

used as metrics of population values. Median values deviated from mean values by less than 

0.5% (Table 3), indicative of symmetrical distributions easily characterized by any descriptor of 

value tendency (i.e., mean, median, or mode). Convergence was also ascertained by examination 

of the Gelman-Rubin statistic (Gelman and Rubin, 1992). 

The fit of each model was assessed by calculating a Bayesian p-value from the posterior 

predictive distribution. Bayesian p-values were simulated using the model’s posterior 

distribution and test whether simulated data are more extreme than the observed data. Bayesian 

P-values range between 0 and 1 where values approaching 0.5 indicate the model is a good fit to 

the data, while extreme values near 0 or 1 indicate that the model does not adequately represent 

the data (Meng, 1994). The deviance information criterion (DIC) was used to compare models. 
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2.4 Parameter estimation from tagging data: Maximum likelihood approach 

The maximum likelihood approach of Laslett et al. (2002) was used to fit Model 5 according to: 

��� = %�&1 − ���('�� ∆���( + *�� (2) 

This method derives growth parameters from the joint distribution of an individual’s length at 

tagging and at recapture. This is most similar in approach to Model 2 of the Bayesian approach 

in that asymptotic length, ��, is treated as a normal random effect �(%�, +�, �, accounting for 

differences among individuals, while � is treated as an unknown fixed parameter. Rather than 

using length increments to fit observed growth, a bivariate normal joint distribution of lengths 

recorded at marking and recapture is used to estimate each individual’s age at tagging (-��. The 

distribution of -� across all individuals (�� is treated as a random effect with a lognormal 

,distribution �(%./0�, +./0��. Measurement error is also treated as a random normal distribution 

�(0, +,�. An unconditional joint density is then derived for each individual by integrating their 

individual joint distribution with respect to -. This process is described in greater detail by 

Laslett et al. (2002). 

, ,This approach was used to estimate values of the growth parameters %�, +�, �, %123�, +./0�, 

and +, by minimizing of the negative log-likelihood cost function obtained from summing the 

unconditional joint density h(�! , �,� of each individual, i.e.: 

−ln(λ!� = −∑� ln h&�9,� , �:,�( (3) 

Two-sided 95% confidence intervals (2.5%, Median, 97.5%) were estimated for each parameter 

using a bootstrapping procedure based on 10,000 iterations. During each bootstrap iteration, the 

model was refit using data randomly resampled with replacement from the original tagging data. 

2.5 Estimation of integrated growth parameters using sources of growth data 

Datasets previously used in other studies to quantify the growth of P. filamentosus in the MHI 

and NWHI were combined with OTP tagging data to produce a single set of integrated parameter 

estimates using a modified form of the method proposed by Eveson et al. (2004). Additional 

datasets that were included represent both direct aging and length frequency approaches and are 

briefly described below. In total, 6 candidate models (Models 6-11) were fit using this approach 

(Table 4). 
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2.6 Parameter estimation: Length frequency data 

Length frequency data consisted of the size distributions of juvenile P. filamentosus sampled 

over 13 months between October 1989 and February 1991 as reported by Moffitt and Parrish 

(1996). The reported fork lengths of captured fish were binned in 1 cm increments and presented 

in 13 histograms corresponding to each month of sampling. The data were reconstructed by 

overlaying a series of evenly spaced horizontal lines across the Y-axis of each histogram 

corresponding to the addition of a single fish. The reconstructed data contained 1,048 

observations, one more than was reported by the original study (Moffitt and Parrish, 1996). 

The reconstructed length frequency data were incorporated into integrated models by 

following the two-step method described by Laslett et al. (2004). In the first step, a Gaussian 

mixture model was fit using maximum likelihood and used to decompose the distribution of fork 

lengths for each recruitment cohort present for each month of data. This was done using the 

normalmixEM function from the mixtools package in R (Benaglia et al., 2009) by assuming the 

mean of each distribution corresponded to the observed mode. A bimodal Gaussian mixture 

model was fit for the data collected between the months of October-February, as the original 

study reported that two cohorts were present during this period. A single cohort was present the 

remainder of the year. In the second step, estimated mean fork length, %̂��<, and standard error, 

=��<, of each cohort during each month of sampling was used to estimate growth parameters 

using the following parameterization of the VBGF: 

%̂��< = %�>1 − ���&'�?@� 'A(B + ���< + *��< (4) 

With this parameterization, C, D, and E reflect the fishing year, month, and age cohort, 

respectively. The estimated age of each cohort at each sampling period is denoted by -��<. Ages 

were estimated relative to the month of July when peak spawning of P. filamentosus occurs, 

resulting in age estimates between 3 and 19 months (Luers et al., 2017). Sampling and residual 

model errors were described using random normal distributions. In contrast to tagging and direct 

aging methods, length frequency approaches lack the information to estimate the variance 

component of asymptotic length (��), so this term was modeled as fixed effect, %�. From this, 

the expected mean fork length of each cohort (Eqn 6), and associated variability during each 

sampling period (Eqn 7) were used to minimize the model’s negative log-likelihood (Eqn 8). The 

rationale for these approximations is discussed to greater depth in Eveson et al. (2004). 
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F&%̂��<( = %�>1 − ���&'�?@� 'A(B (6) 

, + +H,G&%̂��<( = =��< (7) 

! M�?@� N&LM�?@(�O− ln(I,� = ,∑ ∑� � ∑ Jln >2K G&%̂��<(B + (L P&LM�?@( Q (8) < 

2.7 Parameter estimation: Direct aging data 

Sources of direct ageing data included four length-at-age datasets from three prior growth 

studies. Approaches for estimating age differed among studies and included analytical 

integration of otolith bands (Ralston and Miyamoto, 1983, n = 65), counts of otolith micro 

increments (DeMartini et al., 1994, n = 35), comparison of otolith derived bomb radiocarbon 

ratios (Δ14C) relative to a standard reference obtained from hermatypic coral cores from the 

Hawaiian Archipelago (Andrews et al., 2012, n = 33), and otolith-derived lead-radium ratios 

pooled by size class (Andrews et al., 2012, n = 3). 

The details of the method used to estimate growth parameters from direct aging data are 

described in detail in Eveson et al. (2004). Briefly summarized, parameters are modeled using 

the following VBGF parametrization: 

�� = ���&1 − ���('�� 'A�( + R� (9) 

Expected length for each individual and the variance of the measurement error is described by 

equations 10 and 11. 

F(��� = %�(1 − ���('�� 'A�� (10) 

G(��� = +�, (1 − ���('�� 'A��, + +S, (11) 

where �� denotes the length of the C�T fish, at age -� and -U is a fixed parameter analogous to �U 
when a fish has a hypothetical length of zero. As with the model for tagging data, ��� is the 

individual asymptotic length of the C�T fish drawn from the random normal distribution �� = 
�(%�, +��. R� represents the distribution of individual measurement error and is similarly 

random, drawn from the distribution R = �&0, +S(. The log-likelihood function derived from 

these equations is described by: 

!−�V( λ,� = ∑ Wln(2KG(���� + (.��N(.���OX (12) , � P(.�� 
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2.8 Defining an objective cost function and estimating integrated growth parameters 

To derive integrated growth parameters across tag-recapture, direct aging, length frequency, and 

growth increment data sources, we developed an appropriate integrated cost function, defined 

from the sum of the likelihood functions for each data source and a set of scaling constants, βi 

(Eqn 13). The single set of growth parameters best describing all data sources is obtained 

through minimization of: 

Λ = Z!�V(I!� + Z,�V(I,� + Z[�V(I[�…+ Z]�V(I]� (13) 

Models 6-11 were developed and evaluated by permutating the value of scaling constants, the 

pooling of datasets using similar approaches, and whether length-at-age data where age estimates 

were obtained through integration of daily otolith bands were included (Table 4). Two 

approaches were used for the value of scaling constants (βi). The first weighted scaling constants 

for every data source so that each source contributed equally to the resulting parameter estimates 

while the second weighted each source proportionate to its number of observations. Other 

differences between integrated models included whether the four direct aging data sources 

contributed individually to the integrated cost function or if they were first pooled. Omitting 

direct aging data where ages were estimated by integrating daily growth increments was also 

considered as this method is likely to underestimate age (Table 4; Wakefield et al., 2017). 

2.9 Model evaluation 

The six candidate integrated models (Models 6-11) were evaluated using a repeated cross 

validation procedure to determine the model structure that best predicted the growth observed in 

the OTP data (Burman, 1989). During each iteration of this procedure, two thirds of fish in the 

OTP dataset (n = 258) were randomly selected without replacement for model training while the 

remaining third (n = 129) were used to test model performance. Performance was assessed by the 

ability of each parameter set, fit using the training data, to predict the expected length-at-

recapture for fish in the test data by calculating the root mean squared error (RMSE) between the 

predicted and observed growth. The preferred model was that which most frequently resulted in 

the lowest RMSE over 10,000 iterations. To determine if incorporating additional data sources 

improved predictive performance, RMSE for the preferred integrated model was then compared 

to the structure of Model 5 which included only tagging data. 
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Once the structure of the preferred integrated model was determined, two-sided 95% 

confidence intervals were estimated for each parameter from 10,000 bootstrap iterations. As with 

tagging data, the procedure for resampling direct aging data involved random sampling with 

replacement to construct synthetic datasets with an equal number of observations as the original 

data. Bootstrapping length frequency data was done by hierarchical sampling such that the study 

periods in each bootstrapped dataset were resampled from the corresponding periods of the 

original data. 

2.10 Sensitivity analysis 

The accuracy of growth parameters can be affected by the distribution of individuals sampled 

relative to that of the total population (Bolser et al., 2018; Calliet and Tanaka, 1990). Gear 

selectivity, sampling location, variation in annual recruitment, and other factors can lead to under 

representation of some size and age classes in the sample population and introduce bias to 

parameter estimates (Goodyear, 2019; Kapur et al., 2020). 

There were no records of the gear type used to sample and recapture fish in this study, so it 

was not possible to directly incorporate this information in the modeling process. Therefore, a 

sensitivity analysis was performed to quantify the effect of the sampled distribution on parameter 

estimates with an approach inspired by Bolser et al. (2018). It was not possible to simulate new 

observations without making assumptions about growth parameters because the growth observed 

in each individual between marking and recapture events is an essential input to growth 

increment approaches, so a synthetic dataset was constructed through hierarchical resampling of 

the original OTP data. 

The data were binned by the length of each fish at the time of tagging in 5-cm increments and 

then observations from each bin were randomly resampled with replacement until each bin 

contained 200 observations to compensate for uneven sampling across size classes. Each model 

was then refit using this synthetic dataset. The robustness of each model to the sampling 

distribution of the data was determined by whether or not the point estimates generated from the 

sensitivity analysis fell within the previously determined 95% confidence intervals. The 

influence of the sampling distribution on each model was quantified by the percent difference 

between parameter estimates for �� and � fit with synthetic data and those fit using the 

observed data. This type of approach does not explicitly account for differences in selectivity or 
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differences between the sampled and true population structure, but it can fill critical gaps caused 

by these issues by flattening the number of observations across size classes (Bolser et al., 2018). 

3. Results 

3.1 Opakapaka Tagging Program 

In total, 487 recaptures were recorded for 439 unique individuals for a recapture rate of 10.5% 

(Table 2). Mortality of fish upon release appeared to be generally low, likely due to the selection 

of healthy fish in good condition. Some immediate mortality was observed due to capture stress 

and predation by sharks and cetaceans (4 individuals). Long-term mortality was thought to be 

relatively low based upon the high rates of tag return spanning many years. Hydra (small 

cnidarian polyps) biofouling of the tags was observed for some individuals with large times at 

liberty, and some recaptured fish had lesions apparent where the tag exited the body cavity. This 

was not thought to be a serious health issue since the fish appeared to be feeding and swimming 

normally. 

Initial fork length at capture across all individuals ranged in size from 16.5 to 53.3 cm (mean 

= 31.9 cm, standard deviation [s.d.] = 5.5) and ranged from 19.1 cm and 52.8 cm (mean = 32.8, 

s.d. = 5.1) for fish that were later recaptured. For those fish that were later recaptured, fork length 

measured at recapture was between 22.9 cm and 76.2 cm (mean = 41.9, s.d. = 8.7). The 

minimum time at liberty for any fish between tagging and recapture was a single day while the 

maximum time at liberty was 10.3 years (3,748 days) (Fig. 2). The mean time at liberty was 1.82 

years or 666 days (s.d. = 625). 

One fish was excluded from further analysis as its initial fork length at capture was not 

recorded so growth could not be calculated. Seven fish were removed because the recapture date 

was not properly recorded and therefore their time at liberty could not be determined. Of the 

remaining 432 fish recaptured, 351 were recaptured a single time, 33 fish were recaptured a total 

of two times, one fish recaptured 3 times, and two fish were recaptured 4 times. We also 

excluded from analysis 45 individuals for whom time at liberty was less than 60 days to 

minimize the influence of any short-term tagging effects. This process yielded records from 387 

individuals. 

3.2 Estimating growth parameters from tagging data: Bayesian approach 
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The Bayesian hierarchical approach produced mean estimates of �� and � for Models 1–4 

(Table 3). Model 1, which incorporated individual variability in both �� and �, yielded mean 

parameter estimates of �� = 61.4 cm (coefficient of variation [c.v.] = 2.56) and � = 0.29 yr 

(c.v. = 8.3). �� and � parameter estimates for Model 2, where � was fixed, were 61.8 cm (c.v. = 

2.72) and 0.29 yr-1 (c.v. = 45.6) respectively. Under Model 3, where �� was fixed and � was fit 

freely �� = 73.7 cm (c.v. = 41.0) and � = 0.17 yr-1 (c.v. = 8.6) and �� = 73.6 cm (c.v. = 42.7) 

-1 and � = 0.17 yr (c.v. = 72.9) for Model 4, where both parameters were fixed. Additional 

parameters for each of the four models are presented in Table 3. The Gelman-Rubin convergence 

criteria indicated that the model solutions were credible, with asymptotic convergence clearly 

occurring after ~4,000 iterations, well within the burn-in phase of the Bayesian modeling runs. 

All 4 models appeared to fit the the data well; the mean Bayesian P-values from all retained 

posterior samples for all models ranged between 0.500 and 0.501. Model 4 had the lowest DIC 

(4,795.7) followed by Model 3 (4,957.1), and Model 2 (8,523.5), while Model 1 had the highest 

DIC (8,926.6). However treating model parameters as fixed under models 2-4 resulted in large 

coefficients of variation suggesting that accounting for individual variability is important, with 

perhaps variability in �� being more important based upon the low coefficient of variation in �� 
from the base case of Model 1 and the large coefficients seen in Model 3 and Model 4 (Fig. 3). 

3.3 Parameter estimation using maximum likelihood 

,The maximum likelihood approach used for Model 5 converged to produce estimates of %�, +�, 

,�, %123�, +./0�, and +, (Table 5). Bootstrap confidence intervals of parameters %� and � 
overlapped �� and � parameters from Bayesian models 1 and 2 (Table 1). From these results, it 

was concluded that estimates produced by maximum likelihood approaches were satisfactorily 

similar to estimates from the Bayesian approach. Model residuals appeared homoskedastic and 

normally distributed around zero for all but the largest fish. For fish with recapture lengths 

exceeding 60 cm, growth models underestimated observed recapture lengths (Fig. 4). 

3.4 Comparing model performance 

Across all 10,000 cross validation iterations used to determine the preffered integrated model 

structure, the six candidate models produced RMSE values that ranged between 2.78 and 4.95 

(mean = 3.9, s.d. = 0.3), with lower values indicating a better fit to the data. The structure of 
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Model 11 outperformed competing models during cross validation (2,192 of 10,000 iterations ). 

RMSE for this model ranged between 2.9 and 4.9 (mean = 3.9, s.d. = 0.3). 

The inclusion of additional growth data improved the predictive capability of growth models 

compared to tagging data alone. Model 11 performed better than Model 5 during cross validation 

(5,672 of 10,000 iterations). Differences in RMSE between the competing structures of Models 

11 and 5 ranged between -1.2 and 0.1 (mean = -0.1, s.d. = 0.1) with structure of Model 5, fit 

exclusively using tagging data, producing RMSE values that ranged between 2.8 and 5.3 (mean 

= 3.9, s.d. = 0.3). Bootstrapped parameter estimates refit using the structure of the prefered 

integrated model (Model 11) and the tagging only structure of Model 5 are summarized in Table 

1 and all parameters for models 5-11 are reported in full in Table 5. 

3.5 Sensitivity analysis 

Parameters estimated using the observed and synthetic data differed by as much as 205.1% but 

were generally less than 21.3%. For all models, � differed more between the synthetic and 

observed data than ��. Across all models, when refit to the synthetic data, only Models 7 and 11 

produced parameter estimates, that fell within the 95% confidence intervals estimated using the 

original OTP data. Model 7 was the most robust, with the smallest diffrence between �� and � s 

estimated with real and synthetic datasets (1.13% and 8.7% respectively). The preferred 

integrated model (Model 11) was the second-best performing model overall with �� differing by 

2.45% and � by 15.47%. None of the point estimates for �� and � estimated using the Bayesian 

models fit to the synthetic data fell within the 95% confidence intervals for the original models. 

Of the Bayesian models, parameter estimates for Model 1, the model which accounted for 

individual differences in each parameter and had the lowest coefficient of variation across both 

parameters, differed by 36.8% for the �� and 122.5% for � when refit with the synthetic data. 

Parameters for Model 4, the Bayesian model with the lowest DIC score, differed between 

observed and synthetic data by 20.6% in the �� and by 135.0% in �. Sensitivity results for all 

models are reported in full in Table 6. 

4. Discussion 

Our integrated model reconciles 30+ years of effort to quantify growth for P. filamentosus in the 

Hawaiian Archipelago and provide robust support for some previously estimated parameter 

values. Growth parameters derived using integrated models that incorporated additional length 
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frequency and length-at-age data were better able to predict the growth observed in recaptured 

fish compared to those fit using only tagging data. These parameters were in agreement with 

direct aging studies where ages were estimated using 1) the fit of only integrated daily growth 

increments from otoliths collected in the NWHI without constraining �� (Ralston and 

Miyamoto, 1983), 2) integrated daily growth increments and microincrement counts (DeMartini 

et al., 1994), and 3) the radioisotopic composition of otolith material and counts of otolith 

increments from the MHI and NWHI (Andrews et al., 2012) and support the implicit assumption 

that tagging individuals did not significantly disrupt their growth trajectory. integrated 

parameters differed from estimates from an ongoing mark recapture study in the MHI, which 

reported faster growth and smaller asymptotic lengths (O’Malley, 2015). These differences could 

arise from real changes in growth rate between the periods fish were collected, methodological 

differences in model interpretation, and/or that thus far, none of the fish recaptured during the 

ongoing study have been of the largest size classes (maximum size reported = 47.6 cm FL). 

Compared to growth studies across their broader distribution, parameters obtained from the 

Hawaiian archipelago indicate that P. filamentosus were generally slower growing but obtained a 

larger asymptotic length than those from the Mariana Archipelago (Ralston and Williams, 1988) 

and Papua New Guinea (Fry et al., 2006; Andrews et al., 2012) and were faster growing but 

smaller in their asymptotic length when compared to estimates from the Seychelles (Hardman-

Mountford et al., 1997; Mees, 1993; Mees and Rousseau, 1997; Pilling, 2000). These differences 

may represent genetic or phenotypic differences between these populations, or differences in the 

methods and sampling distribution between studies. It was not possible to distinguish between 

these two possibilities due to a lack of information on the gear used to sample and recapture fish 

in both these and the OTP study. 

Of the Bayesian models, Model 1 was presumed optimal because it incorporated individual 

variability in both �� and K. However, this model performed the worst of all Bayesian models 

during sensitivity analysis. Models 2-4 suggest that individual variability in both � and �� s is 

important, with perhaps variability in �� being more important based on the similar parameter 

estimates obtained from Models 1 and 2 and comparison of relatively small the coefficient of 

variation for �� from the base case of Model 1 to the larger coefficients of variation under 

assumptions of constrained individual variability in Model 3 and Model 4 (Fig. 3). Based on 

these parameter estimates and pattern of large standard deviations, it is likely Models 3 and 4 
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were not credible despite lower DIC values and performing well during sensitivity analysis. 

Similar parameter estimates obtained from Models 1 and 2 suggested that the primary source of 

individual variability was due to variability in the �� parameter. This is consistent with other 

studies where the best models accounted for individual variability in both terms but accounting 

for individual variation in the �� term alone was sufficient to describe growth while significantly 

reducing computational complexity (Eveson et al., 2007; Zhang et al., 2009). However, during 

the sensitivity analysis all of the Bayesian models failed to produce parameter estimates that fell 

within the 95% confidence intervals estimated from the original data, suggesting sensitivity in 

the estimated parameters to the sampling distribution of fish across size classes. 

The treatement of individual variability in parameters for Model 2 were identical to those 

used to fit Model 5 (OTP data only). Comparing growth parameter estimates from these models 

indicate that Bayesian and maximum likelihood fitting methods performed similarly. Parameter 

estimates for Models 1 and 2 were contained within the 95% confidence intervals of Model 5. 

These results suggest that treatment of K as a fixed effect was unlikely to bias estimates in 

integrated models, fit using maximum likelihood, which were evaluated under the same 

assumptions as models 2 and 5. 

Of all models presented, Model 11 was the best performing during predictive during cross 

validation and was one of only two models that proved robust to the sensitivity analysis. While 

information from older/larger fish from direct aging datasets was very important for grounding 

the upper end of integrated growth curves and resulted in parameters that better predicted length 

at recapture, these additional data sources were less influential to the best performing models 

than for those otherwise identical in structure but placing a greater emphasis on those additional 

data sources. This result suggests that the inclusion of additional data was important for 

obtaining accurate results but were most helpful when their influence was limited. 

The additional sources of data included here represent collections spanning several decades 

from the MHI and NWHI. When incorporating these additional data sources, it is an inherent 

assumption that growth within the population did not differ significantly with time or region. 

This is not the first study to make these assumptions; with the exception of Ralston and 

Miyamoto (1983), all subsequent studies of growth for P. filamentosus in the Hawaiian 

archipelago have included datasets or parameter estimates from one or more previous studies in 

their calculations without regard to the time and place the data was collected (DeMartini et al., 
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1994; Moffitt and Parrish, 1996; Andrews et al., 2012). Genetic homogeneity between NWHI 

and MHI stocks provides some justification for pooling data across regions. However, these 

spatial and temporal assumptions may not reflect phenotypic realities and further work is 

required to resolve whether differences in growth exist between the two regions (Gaither et al. 

2010, 2011). 

Sexual size dimorphism may explain the tendency of parameters obtained here and elsewhere 

to underestimate the length at recapture observed for the largest fish in the OTP dataset 

(approximate fork length > 50 cm) (Fig. 4). For sex agnostic models, parameters are essentially 

averaged between sexes. In smaller sizes classes where the sex ratio of individuals is similar to 

that of the total population, this averaging of parameters between sexes results in increased 

estimates of variance. However, if dimorphic differences in growth are present and one sex 

disproportionately attains a greater asymptotic length than the other, that sex is likely to be 

overrepresented in the largest size classes relative to the total population. Growth estimated for 

these individuals continues to represent an average of both sexes and will result in the 

underestimation of lengths at recapture, while growth in the underrepresented sex will be 

overestimated. This produces a residual pattern resembling the one seen in the OTP data. 

While not pronounced, dimorphic size differences have been observed in a number of 

lutjanid species (Grimes, 1987; Mees, 1993; Newman et al., 2000; Newman and Dunk, 2002; 

Nichols, 2019; Taylor et al., 2018; Williams et al., 2017). Elsewhere in their distribution, larger 

asymptotic lengths have been reported for male P. filamentosus in the Seychelles, research 

fishing in the Northwestern Hawaiian Islands found, the number of females outnumbered males 

almost 2:1 in the largest size classes, and in Guam no differences between sexes were observed 

(Kami, 1973; Kikkawa, 1984; Mees, 1993). Estimation of growth parameters for P. filamentosus 

in the Central Pacific have thus far remained sex agnostic and a method for non-invasive sexing 

of this species was unknown until recently (Luers et al., 2017). Therefore, these differences may 

reflect true sexual dimorphism or discrepancies between the structure of the sampled and true 

populations. More work addressing sex specific differences is required to adequately test for 

dimorphism in this region. 

Accurate estimates of von Bertalanffy growth parameters are very important for 

management. Growth parameters are often used directly or indirectly in stock assessment and 

fisheries management (Haight et al., 1993; Polovina et al., 1987). These efforts are sensitive to 
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both growth parameters and the model used to estimate those parameters. For example, the rate 

of instantaneous natural mortality M is a value of interest often inferred from K using empirical 

relationships (Jensen, 1996; Ralston, 1987; Thorson et al., 2017). Underestimating � will 

underestimate M, characterizing a stock as less productive than it actually is while 

overestimating K will have the opposite effect. If a management regime is linked to such a 

flawed estimate of stock productivity, then the stock is likely to be mismanaged and under or 

over harvested, respectively, relative to its true biological potential. Future work to refine these 

estimates for P. filamentosus should consider how the distribution of the sampled population and 

dimorphic differences between males and females may affect their respective life histories. 
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Tables 

Table 1. Estimates (and 95% confidence intervals when available) of von Bertalanffy growth 
parameters ��, K, and to reported by the present and prior studies. 

Table 2. Summary of tagging and recapture locations for P. filamentosus used for growth 
increment approaches as referenced to reporting grids in Figure 1. Adapted from Kobayashi 
(2008). 

Table 3. Von Bertalanffy growth parameter estimates from Bayesian hierarchical growth models 
(Models 1-4). 

Table 4. A reference for the candidate model structures used to determine the preferred model 
structure from integrated maximum likelihood growth models (Models 5-11). 

Table 5. Sample and Population Parameter Estimates (with bootstrapped confidence intervals) 
from Maximum Likelihood Growth Models (Models 5-11). 

Table 6. Parameter estimates obtained from a sensitivity analysis where tagging data was 
divided into 5 cm bins and then synthetic data was added so that each bin contained 200 
observations. Comparing parameter estimates fit to synthetic data against those from the original 
dataset provide a metric to compare the effect of the sampling distribution on the estimates 
obtained. 

24 



 

  

     
              

             

  

 

             

               

                

                 

               

                   

             

           

 

            

            

             

            

       

 

           

              

               

               

      

Figure Captions 

Figure 1. Reporting Grid Map. 
Map showing the location and number of the State of Hawaii’s statistical reporting grids 

corresponding to the reported location of tagging and recaptured for fish summarized in 

Table 5.2. 

Figure 2. Length and Time at Liberty for OTP and Additional Data. 

The length of P. filamentosus recaptured and included in analysis of OTP tagging data and 

the distribution of times at liberty are presented in subplots a and b respectively. The fork 

length of fish during tagging is highlighted in blue while length at recapture is shown in red. 

Subplot c shows the measured fork length and estimated ages from the various sources of 

length at age data included in models 6 – 10 while subplot d tracks the mode fork length for 

cohorts included in the length frequency data originally presented by Moffitt and Parrish 

(1996), also used to supplement OTP data in models 6-10. 

Figure 3. Coefficient of Variation for von Bertalanffy Growth Function Parameters. 

Coefficient of variation for 2 von Bertalanffy growth function parameters (Brody growth 

coefficient, K and mean asymptotic length, L∞) for P. filamentosus. Individual variability was 

examined incorporating individual variability in both parameters, in either one of the 

parameters in series, or in neither parameter. 

Figure 4. Plots Comparing Predicted and Observed Length at Recapture. 

Predicted lengths at recapture compared to the observed lengths at recapture for tagged P. 

filamentosus. Length at recapture was predicted as a function of length at marking, time at 

liberty, and parameter point estimates. The 1:1 line indicates where points would fall if model 

parameters perfectly predicted length at recapture. 
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0.18 
0.02 

10041.04 
9.40 
0.10 
10.16 

5.08 
512.36 
2567.91 

3.68 
40.17 
0.03 
0.02 

10026.14 
1.00 
0.01 
0.74 

61.87 
0.01 
0.00 
26.41 

3913.77 
0.13 
0.01 

286.57 
7.61 
0.09 
8.81 

73.71 
0.50 
3.97 
32.72 

3987.84 
0.17 
0.01 

6962.39 
9.35 
0.10 
10.12 

83.53 
59.34 

7369.69 
40.80 

4070.70 
0.23 
0.06 

37035.94 
11.53 
0.11 
11.72 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

25000 
65000 
65000 
17000 
57000 
50000 
110000 
110000 
38000 
110000 
110000 



 

 

Data Source Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 

Growth Increment 

OTP 

Mark Recapture 
X X X X X X X 

Direct Aging 

Ralston & Miyamoto (1983) 

 Integrated Daily Otolith 

Counts 

- X X X X - -

Direct Aging 

Demartini et al. (1994) 

 Otolith Microincrements 
- X X X X X X 

Direct Aging 

Andrews et al. (2012) 

 Bomb Carbon 
- X X X X X X 

Direct Aging 

Andrews et al. (2012) 

 Lead:Radium 
- X X X X X X 

Length Frequency 

Moffitt & Parrish (1996)

 Modal Progression 
- X X X X X X 

Weighting NA Equal By n Equal By n Equal By n 

Pooled Within Data Types? NA Yes Yes No No No No 



   Parameter Estiamtes for Integrated Growth Models 

 Model 5  Model 6  Model 7  Model 8 

Parameter Sample 

Linf_mu 62.95 

Population 

 60.98 (56.17, 66.67) 

Sample 

77.96 

Population Sample 

 76.79 (70.27, 78.69) 64.74 

Population 

 64.80 (61.91, 67.17) 

Sample 

66.87 

Population 

 66.89 (63.90, 70.10) 

Linf_std 5.07  5.3 (4.53, 6.07) 6.02  5.256 (4.00, 6.83) 5.62  5.57 (4.72, 6.36) 5.53  5.31 (2.61, 6.25) 

K 0.275  0.299 (0.229, 0.393) 0.122  0.189 (0.121, 0.235) 0.262  0.260 (0.231, 0.302) 0.253  0.25 (0.21, 0.29) 

A_mu 0.98  0.95 (0.8, 1.09) 1.5  1.21 (1.06, 1.50) 1  1.00 (0.92, 1.08) 0.99  0.98 (0.89, 1.10) 

A_sig 0.17  0.19 (0.15, 0.24) 0.13  0.16 (0.12, 0.19) 0.18  0.18 (0.14, 0.22) 0.18  0.18 (0.15, 0.21) 

Sig 2.5  2.08 (1.50, 2.55) 2.97  2.51 (2.05, 3.11) 2.2  2.20 (1.74, 2.62) 2.32  2.36 (1.94, 2.93) 

t0 - - -0.86  -0.50 (-0.90, -0.34) -0.31  -0.32 (-0.44, -0.20) -0.27  -0.27 (-0.43, -0.17) 

oto_sig - - 6.79  3.93 (1.31, 7.09) 1.82  1.76 (0.68, 3.03) 1.33  1.30 (0.47, 3.14) 

lf_sig - -

 Model 9 

1.33  3.06 (1.31, 4.06) 4.07 

 Model 10 

 4.39 (3.86, 4.98) 

 Model 11 

3.93  4.32 (3.53, 5.03) 

Parameter Sample 

Linf_mu 64.74 

Population 

 64.80 (62.22, 67.03) 

Sample 

69.34 

Population Sample 

 68.72 (65.23, 71.68) 68.14 

Population 

 67.55 (65.42, 69.55) 

Linf_std 5.62  5.58 (4.74, 6.37) 4.26  4.08 (3.00, 5.11) 4.90  5.00 (4.26, 5.68) 

K 0.261  0.26 (0.23, 0.30) 0.146  0.17 (0.13, 0.21) 0.214  0.219 (0.198, 0.245) 

A_mu 1  1.00 (0.925, 1.08) 1.5  1.37 (1.19, 1.60) 1.124  1.11 (1.03, 1.19) 

A_sig 0.18  0.18 (0.15, 0.22) 0.14  0.155 (0.119, 0.184) 0.16  0.17 (0.14, 0.2) 

Sig 2.2  2.20 (1.75, 2.61) 3.29  2.99 (2.45, 3.62) 2.66  2.39 (2, 2.77) 

t0 -0.31  -0.32 (-0.43, -0.21) -0.8  -0.65 (-0.96, -0.43) -0.37  -0.37 (-0.47, -0.28) 

oto_sig 1.82  1.74 (0.66, 2.94) 1.61  1.42 (0.97, 1.84) 1.04  0.96 (0.49, 1.31) 

lf_sig 4.07  4.38 (3.88, 4.94) 1.43  2.41 (1.43, 3.29) 3  4.63 (4.15, 5.15) 



    

1

2

3

4

5

6

7

8

9

10

11

Model Linf - Sensitivity Linf - Original Fit % Difference in Linf fits K - Sensitivity K - Original Fit % Difference in K fits 

Model 53.97 61.26 -11.91 0.46 0.3 56.6 

Model 54.08 61.79 -12.48 0.46 0.29 59.4 

Model 56.6 73.69 -23.18 0.45 0.17 158.6 

Model 56.71 73.67 -23.03 0.44 0.18 151.1 

Model 54.5 62.95 -13.43 0.45 0.27 62.1 

Model 69.92 77.96 -10.32 0.2 0.12 63.4 

Model 64.93 64.74 0.29 0.27 0.26 3.6 

Model 54.5 66.89 -18.53 0.45 0.25 76.1 

Model 54.5 64.74 -15.82 0.45 0.26 70.7 

Model 54.5 69.34 -21.41 0.45 0.15 205.1 

Model 66.47 68.14 -2.45 0.25 0.21 15.5 


	Estimation of growth parameters integrating tag-recapture, length-frequency, and direct aging data using likelihood and Bayesian methods for the tropical deepwater snapper Pristipomoides filamentous in Hawaii
	Abstract
	1. Introduction
	2. Materials and methods
	3. Results
	4. Discussion
	Acknowledgements
	References



